首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   1篇
  国内免费   10篇
  2021年   1篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2008年   2篇
  2006年   2篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   5篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
排序方式: 共有39条查询结果,搜索用时 484 毫秒
21.
  • 1 Various factors such as climate and resource availability influence the geographical distributions of organisms. Species sensitive to small temperature variations are known to experience rapid distribution shifts as a result of current global warming, sometimes leading to new threats to agriculture and forests. Tomicus piniperda and Tomicus destruens (Coleoptera, Curculionidae, Scolytinae) cause economic damage to pines in Europe and around the Mediterranean Basin. However, their respective potential distributions have not yet been studied at a large scale. The present study aimed to investigate the influence of climatic and host factors on the geographical distributions of both Tomicus species in Europe and around the Mediterranean Sea, and to establish maps of suitable areas.
  • 2 Using 114 published localities where the presence or absence of both species was unambiguously recorded, we gathered WorldClim meteorological records to correlate the occurrence of insects with bioclimatic variables and to build potential distribution maps.
  • 3 The two studied Tomicus species presented parapatric distributions and opposite climate demands, with T. destruens occurring in locations with warmer temperatures, whereas T. piniperda occurs under a colder climate. Amongst the investigated climate variables, temperature appeared to be most correlated with both species distributions.
  • 4 The potential ranges of both species were further restricted by the availability of pine hosts. It appeared that setting new pine plantations in regions where T. destruens or T. piniperda are still absent could favour a rapid expansion of their distributions. Our data will be useful when aiming to apply management strategies adapted to each species, and to forecast their potential range expansions/contractions as a result of climate warming.
  相似文献   
22.
1 In 1996, 7000 ha of pine forests were defoliated by the pine looper Bupalus piniaria in south‐western Sweden. 2 The susceptibility of trees of different defoliation classes (0, 30, 60, 90 and 100% defoliation) to beetle‐vectored blue‐stain fungi was tested in inoculation experiments. Forty and 120‐year‐old Scots pine trees were inoculated with ‘single’, i.e. a few inoculations of Leptographium wingfieldii and Ophiostoma minus, two blue‐stain fungi associated with the pine shoot beetle Tomicus piniperda. The young trees were also ‘mass’ inoculated with L. wingfieldii at a density of 400 inoculation points per m2 over a 60 cm stem belt. 3 Host tree symptoms indicated that only trees with 90–100% defoliation were susceptible to the mass inoculation. 4 Single inoculations did not result in any consistent differences in fungal performance between trees of different defoliation classes, regardless of inoculated species or tree age class. 5 Leptographium wingfieldii produced larger reaction zones than O. minus, and both species produced larger lesions in old than in young trees. 6 As beetle‐induced tree mortality in the study area occurred only in totally defoliated stands, mass inoculations seem to mimic beetle‐attacks fairly well, and thus seem to be a useful tool for assessing host resistance. 7 As even severely defoliated pine trees were quite resistant, host defence reactions in Scots pine seem to be less dependent on carbon allocation than predicted by carbon‐based defence hypotheses.  相似文献   
23.
经过对纵坑切梢小蠹 (TomicuspiniperdaL .)种群密度和云南松 (PinusyunnanensisFranch .)生长状况的长期、仔细的调查 ,加上改进的回归分析方法 ,得出了为害云南松的纵坑切梢小蠹防治上的经济阈值 :当林木枯死率不超过 0 .5 2 %时 ,自然控制因子能控制纵坑切梢小蠹种群不向高密度方向发展 ,因而可以不必防治。当林木枯死率达到 0 .5 0 % ,对应的枯捎率为 0 .6 1 % ,以及对应的平均每株侵入孔数为 0 .6 6时 ,防治费用和挽回损失价值相当。所以 ,若既考虑到经济上的合理性 ,又考虑到控制其种群不向高密度方向发展 ,当林木枯死率超过 0 .5 % ,对应的枯梢率超过 0 .6 1 % ,以及对应的平均每株侵入孔数超过 0 .6 6时 ,就有了进行防治的必要。本文还给出了各云南松林区可以用来根据自己的具体情况计算出适合自己的经济阈值的公式。  相似文献   
24.
纵坑切梢小蠹对云南松蛀害研究   总被引:10,自引:1,他引:9  
叶辉 《昆虫学报》1999,42(4):394-400
在昆明地区,纵坑切梢小蠹Tomicus piniperda L.表现出枝梢聚集、树干蛀害等重要的行为学特征,形成三种基本蛀害模式。横坑切梢小蠹、蓝色伴生真菌参与了纵坑切梢小蠹危害过程,并在其中发挥积极作用。上述因素的综合影响,加强了纵坑切梢小蠹对云南松Pinus yunnanensis寄主树木的危害能力。  相似文献   
25.
纵坑切梢小蠹对云南松蛀害研究   总被引:4,自引:0,他引:4  
叶辉 《昆虫学报》1999,42(4):394-400
在昆明地区,纵坑切梢小蠹Tomicus piniperda L.表现出枝梢聚集、树干蛀害等重要的行为学特征,形成三种基本蛀害模式。横坑切梢小蠹、蓝色伴生真菌参与了纵坑切梢小蠹危害过程,并在其中发挥积极作用。上述因素的综合影响,加强了纵坑切梢小蠹对云南松Pinus yunnanensis寄主树木的危害能力。  相似文献   
26.
Abstract 1 After a 1‐year, extensive pine looper (Bupalus piniaria) outbreak, plots were laid out to study tree susceptibility to attack, and performance of Tomicus piniperda in pine trees suffering from varying levels of defoliation. 2 Tomicus piniperda was the dominating stem‐attacking species among the primary stem colonizers, and 82% of all trees that died had been colonized by T. piniperda. 3 Beetle attacks primarily struck severely defoliated trees, i.e. trees that suffered from 90% to 100% defoliation. 4 Beetle attacks peaked in the second year after cessation of the outbreak, and suppressed trees were both more frequently attacked and more susceptible to beetle attack than intermediate and dominant trees. 5 Trees surviving beetle attacks carried more foliage than trees that did not survive the attacks. 6 A single year of severe defoliation is enough to render pine trees susceptible to secondary pests, such as T. piniperda.  相似文献   
27.
廖周瑜  叶辉  吕军  夏元铃 《应用生态学报》2003,14(10):1747-1750
温度对云南松的抗性以及纵坑切梢小蠢伴生菌的生长和致病力有着重要的影响。温度变化将导致二者之间的对抗力量的变化:在温度低于10℃和高于30℃条件下,云南松的生理代谢、抗性以及伴生菌的生长都将受到抑制,但伴生菌受到的抑制作用更大,云南松的抗性相对增强;在15~30℃温度范围内。纵坑切梢小蠢伴生菌生长较快。云南松的抗性相对减弱。结果表明,在温度相对适中的条件下,纵坑切梢小蠢伴生菌的生长侵染力相对增强,而云南松的抗性相对减弱。  相似文献   
28.
Genetic diversity and population structure of Tomicus piniperda was assessed using mitochondrial sequences on 16 populations sampled on 6 pine species in France. Amplifications of Internal transcribed space 1 (ITS1) were also performed. Our goals were to determine the taxonomic status of the Mediterranean ecotype T. piniperda destruens, and to test for host plant or geographical isolation effect on population genetic structure. We showed that T. piniperda clusters in two mtDNA haplotypic groups. Clade A corresponds to insects sampled in continental France on Pinus sylvestris, P. pinaster and P. uncinata, whereas clade B gathers the individuals sampled in Corsica on P. pinaster and P. radiata and in continental France on P. pinea and P. halepensis. Insects belonging to clade A and clade B also consistently differ in the length of ITS1. Individuals belonging to both clades were found once in sympatry on P. pinaster. Genetic distances between clades are similar to those measured between distinct species of Tomicus. We concluded that clade B actually corresponds to the destruens ecotype and forms a good species, T. destruens. Analyses of molecular variance ( amova ) were conducted separately on T. destruens and T. piniperda to test for an effect of either geographical isolation or host species. Interestingly, the effect of host plant was significant for T. piniperda only, while the effect of geographical isolation was not. Pine species therefore seems to act as a significant barrier to gene flow, even if host race formation is not observed. These results still need to be confirmed by nuclear markers.  相似文献   
29.
纵坑切梢小蠹蛀梢期空间分布   总被引:11,自引:0,他引:11  
在昆明地区,纵坑切梢小蠹(Tomicus piniperda)成虫蛀梢多集中在蛀干木附近。种群密度以蛀干木为中心向周围是指数递减,散布半径约30m。在蛀虹梢过程中,该种群逐渐向新区扩张。在树冠内,纵坑切梢小蠹主要分布在4—10轮枝上。第7轮技虫口百分率最高。6—7轮枝受害率最大。树冠上层受害较其下属于重。从树冠水平层次考察,树冠外层虫量相对集中,约为树冠中、内层虫量之和。树冠内层虫量最少。纵坑切梢小蠹在树冠内的种群分布系由梢径、种群密度、蛀梢行为、降落方式、光照等因素综合影响的结果。  相似文献   
30.
云南切梢小蠹对云南松树的蛀干危害及致死机理   总被引:2,自引:0,他引:2  
吕军  叶辉  段焰青  廖周瑜  母其爱 《生态学报》2010,30(8):2100-2104
蛀干危害是云南切梢小蠹致死云南松树的关键环节。通过控制云南切梢小蠹蛀干密度,对云南切梢小蠹在自然条件下蛀干行为与危害进行了首次探讨。结果表明,云南切梢小蠹蛀干密度与云南松存活率呈负相关,蛀干密度直接决定云南松死亡或存活。研究发现,蛀干密度115坑/m2是云南松树的最低致死密度阈值,云南松树在蛀干密度低于26.4坑/m2情况下存活,在26.4-115坑/m2有部分存活,超过115坑/m2以后将被害致死。云南切梢小蠹对树干攻击形成有卵和无卵两类坑道。形成无卵坑道的蛀干攻击可导致树势衰弱,形成有卵坑道的蛀干危害严重破坏了韧皮组织,是导致云南松死亡的直接原因。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号